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[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP'17

[Carlini, Tramer, et al.] Extracting Training Data from Large Language Models, Usenix security’21
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Machine Learning Under Attack
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[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS'15

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

[Melis, Song, De Cristofaro, Shmatikov] Exploiting Unintended Feature Leakage in Collaborative Learning, SP'19
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Al Regulations - Data Protection

« ... membership inferences show that Al models can inadvertently
contain personal data” 1CO.

e "Attacks that reveal confidential information about the data include
membership inference whereby ..." e

« ... ensuring that privacy and personal data are adequately protected

|Il

during the use of A

o« M. ensuring that Al systems are resilient to overt attacks and subtle
attacks that manipulate data or algorithms...."

« "...should consider the risks to data throughout the design,
development, and operation of an Al system”

On Artificial Intelligence - A European Approach to excellence and trust - Feb 2020

The White House Memo on Guidance for Regulation of Artificial Intelligence Applications - Jan 2020
Guidance on the Al auditing framework Draft guidance for consultation. Information Commissioner’s Office
A Taxonomy and Terminology of Adversarial Machine Learning. Draft NISTIR 8269
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Data Protection Impact Assessment

Systematic description of
data collection, storage
and processing

Assess necessity and
proportionality

Likelihood and impact of
the threats on
individuals

https://gdpr-info.eu/art-35-gdpr/
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How to Quantitatively Measure
the Privacy Risk of ML?

How to Check Compliance with
Privacy Regulations?
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Privacy Risks in Machine Learning

Direct Leakage
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Privacy Risks in Machine Learning

X W
e ~ x
— —
input
Training Set p— training ——» y @
. [ prediction
\ § ) ;W)
parameters fpredictions

Indirect Leakage



Reza Shokri — 2021

Privacy Risks in Machine Learning
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Privacy Risks in Machine Learning

What is leakage? Inferring information about members of X,

beyond what can be learned about its underlying distribution
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How to Quantify the Leakage?

* Indistinguishability game: Can an adversary distinguish
between two models that are trained on two neighboring
datasets (one includes an extra data point x)?

* Membership inference: Given a model, can an adversary
infer whether data point x is part of its training set?

it _predict(data) (
| (data record, class label) * >L Target Model

____________________

[ Attack Model } prediction

data € training set ?

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP*17
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How to Quantify the Leakage?

* Indistinguishability game: Can an adversary distinguish
between two models that are trained on two neighboring
datasets (one includes an extra data point x)?
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[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP*17
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Tool: ML Privacy Meter
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ML Privacy Meter is a Python library (m1 privacy meter) E

that enables quantifying the privacy risks ot machine learning -|.

y.l

models. https://github.com/privacytrustlab/ml_privacy meter EI’E

[Murakonda, Shokri] ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of

Machine Learning, HotPETs 2020

10


https://github.com/privacytrustlab/ml_privacy_meter
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Privacy Leakage due to Overfitting

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack
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[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP*17
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Disparate Privacy Vulnerability

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack
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[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP*17
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White-box Privacy Analysis

» Leakage through parameters (white-box) vs. predictions

13

(black-box)
Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44%
CIFAR100 ResNet 89% 73%
CIFAR100 DenseNet 100% 82%

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19
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White-box Privacy Analysis

» Leakage through parameters (white-box) vs. predictions

13

(black-box)
Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44%
CIFAR100 ResNet 89% 73%
CIFAR100 DenseNet

High generalizability
to test data

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19
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White-box Privacy Analysis

» Leakage through parameters (white-box) vs. predictions

13

(black-box)
Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44% 74.2% 74.6% 75.1%
CIFAR100 ResNet 89% 73% 62.2% 62.2% 64.3%
CIFAR100 DenseNet 67.7% 67.7% 74.3%

High generalizability
to test data

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19
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White-box Privacy Analysis

13

» Leakage through parameters (white-box) vs. predictions

(black-box)
Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44% 74.2% 74.6% 75.1%
CIFAR100 ResNet 89% 73% 62.2% 62.2% 64.3%
CIFAR100 DenseNet 67.7% G

High generalizability
to test data

Low privacy

(Significant leakage

through parameters)

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19
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White-box Privacy Analysis

13

» Leakage through parameters (white-box) vs. predictions

(black-box)

Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44% 74.2% 74.6% 75.1%
CIFAR100 ResNet 89% 73% 62.2% 62.2% 64.3%
CIFAR100 67.7% ety il

Large High generalizability Low privacy

capacity to test data (Significant leakage

through parameters)

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19
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» Leakage through parameters (white-box) vs. predictions
(black-box)
Most accurate pre-trained models Mem inference attack accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)

CIFAR100 Alexnet 99% 44% 74.2% 74.6% 75.1%

CIFAR100 ResNet 89% 73% 62.2% 62.2% 64.3%
Large High generalizability Low privacy

capacity to test data (Significant leakage

through parameters)

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

[Feldman] Does Learning Require Memorization?A Short Tale about a Long Tail, STOC'20
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Decentralized (Federated) Learning
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[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS'15
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19

[Melis, Song, De Cristofaro, Shmatikov] Exploiting Unintended Feature Leakage in Collaborative Learning, SP'19

14
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Decentralized (Federated) Learning

Adversary can observe multiple
snapshots of the model
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[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS'15
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-

box Inference Attacks against Centralized and Federated Learning, SP’19

[Melis, Song, De Cristofaro, Shmatikov] Exploiting Unintended Feature Leakage in Collaborative Learning, SP'19
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Decentralized (Federated) Learning

Adversary can observe multiple

Aggregate

snapshots of the model

Observed Epochs Attack Accuracy
5, 10, 15, 20, 25 57.4%
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[Shokri and Shmatikov] Privacy-Preserving Deep Learning, CCS'15

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19

[Melis, Song, De Cristofaro, Shmatikov] Exploiting Unintended Feature Leakage in Collaborative Learning, SP'19
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Decentralized (Federated) Learning
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19
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Decentralized (Federated) Learning
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[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP'19
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Decentralized (Federated) Learning

b, Aggregate
Active Attack: Gradient Ascent
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A participant correct it back (by running

gradient descent locally) only if x is part of
its training set. => membership leakage

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP'19
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NLP Models

* How much does the model leak about the
sentences of a particular author/speaker?
What about the membership of the author in
the training set (based on known samples)?

* Which samples are leaked?

\4

Privacy Risk
Report for the
Training Data

16
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Membership Inference
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SATED (Speaker
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[Maddi] https://github.com/privacytrustlab/ml_privacy meter based on [Song, Shmatikov] Auditing Data

Provenance in Text-Generation Models, KDD'19
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Membership Inference
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Membership Inference
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Examples of Vulnerable Training Data

TED - WATCH DISCOVER

weapon

[ 2 b a—

But it gets worse. And this is very important, what I'm going to say. Think about this: this attack is
generic. It doesn't have anything to do, in specifics, with centrifuges, with uranium enrichment. So it
would work as well, for example, in a power plant or in an automobile factory. It is generic. And you
don't have -- as an attacker -- you don't have to deliver this payload by a USB stick, as we saw it in
the case of Stuxnet. You could also use conventional worm technology for spreading. Just spread it as

Chris Anderson: I've got a question. Ralph, it's been quite widely reported that people assume that
Mossad is the main entity behind this. Is that your opinion?

Ralph Langner: Okay, you really want to hear that? Yeah. Okay. My opinion is that the Mossad is
involved, but that the leading force is not Israel. So the leading force behind that is the cyber
superpower. There is only one, and that's the United States -- fortunately, fortunately. Because
otherwise, our problems would even be bigger.
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Examples ofVuInerabIe Training Data

TED Ideas worth spreading WATCH  DISCOVER

— 19geme o) (B ALy A

This year, Germany is celebrating the 25th anniversary of the peaceful revolution in East Germany. In
1989, the Communist regime was moved away, the Berlin Wall came down, and one year later, the
German Democratic Republic, the GDR, in the East was unified with the Federal Republic of Germany
in the West to found today's Germany. Among many other things, Germany inherited the archives of
the East German secret police, known as the Stasi. Only two years after its dissolution, its documents
were opened to the public, and historians such as me started to study these documents to learn more
about how the GDR surveillance state functioned.
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ML Privacy Meter as a
Privacy Regularizer

Pr((x,y) € D) = h(x,y, f(x))
T

4 D

inference model h

N N

[prediction vector f (x)j

( N
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g J

N

[[ features x j input [ label y ]

[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS'18
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ML Privacy Meter as a
Privacy Regularizer

Pr((x,y) € D) = h(x,y, f(x))
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[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS'18
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ML Privacy Meter as a
Privacy Regularizer

2.0 . :
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[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS'18
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Privacy and Generalization

Without defense With defense
Dataset Training  Testing Attack Training  Testing Attack
accuracy accuracy —accuracy | accuracy —accuraCcy —accuracy
Purchase100 100% 80.1% 67.6% 92.2% 76.5% 51.6%
Texas100 81.6% 51.9% 63% 55% 47.5% 51.0%
CIFAR100- Alexnet 99% 44.7% 53.2% 66.3% 43.6% 50.7%
CIFAR100- DenseNET | 100% 70.6% 54.5% 80.3% 67.6% 51.0%

Smaller gap

Random guess

[Nasr, Shokri, Houmansadr] Machine Learning with Membership Privacy using Adversarial Regularization, CCS'18
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Tool: ML Privacy Meter
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ML Privacy Meter is a Python library (m1 privacy meter) E

that enables quantifying the privacy risks ot machine learning -|.

y.l

models. https://github.com/privacytrustlab/ml_privacy meter EI’E

[Murakonda, Shokri] ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of

Machine Learning, HotPETs 2020
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