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More on -redundancy (2f, ϵ)

Satisfied by every system for varied value of ϵ

 quantifies the loss of redundancyϵ

Enables derivation of lower and upper bounds on Byzantine resilience*
In distributed learning: we can characterize resilience versus heterogeneity       

* Generalize prior results on resilience in distributed optimization, learning, state estimation, and swarm robotics.
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(2f, ϵ)
( f, 2ϵ)

-resilience  


only if  -redundancy

( f, ϵ)
(2f, ϵ)

Lower Bound

Upper Bound

* In deterministic setting. 

Theorem 2

Liu et al., PODC'21 
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Fault-tolerance in DGD
Byzantine robust gradient-filters

• Presence of Byzantine gradients warrants gradient filtering*

•  robustly aggregates gradients, instead of simple averagingGradFilter(gt
1, . . . , gt

n)

KRUM [Blanchard et al., NIPS’17], GMoM [Chen et al., SIGMETRICS’18]; 


Bulyan [El-Mhamdi et al., ICML’18], CWTM [Yin et al., ICML’18];


CGE [Gupta & Vaidya, PODC’20]

xt+1 = xt − ηt ⋅ GradFilter(gt
1, . . . , gt

n)

- Prominent gradient-filters -

* a.k.a., Byzantine robust gradient aggregation rule (GAR)
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• Comparative gradient elimination (CGE)

Examples

   n = 6 f = 2
Remove gradients with -largest norms f

• Coordinate-wise trimmed mean (CWTM)
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2.5

Trim (    )n = 6 f = 2

Mean

For each coord., remove  largest/smallest values


then calculate the mean

f

Gupta & Vaidya, 2019 

Yin et al., ICML’18; Su & Shahrampour, TRACON’19 
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With -redundancy, DGD with gradient filters is -resilient(2f, ϵ) ( f, 𝒪(ϵ))

CGE requires 

Resilience of CWTM is independent of   *

f < n/3

f

Accuracy under -redundancy (2f, ϵ)

Resilience of CGE independent of d   


Resilience of CWTM dependent on d     

* Relies on additional assumption, besides -redundancy (2f, ϵ)

Liu et al., PODC ’21



Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Each agent has a data distribution 𝒟i

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Loss function for each data 
point : z ℓ(x; z) : ℝd ↦ ℝ

Each agent has a data distribution 𝒟i

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Loss function for each data 
point : z ℓ(x; z) : ℝd ↦ ℝ Qi(x) = 𝔼zt∈𝒟i

ℓ(x; zt
i)

Each agent has a data distribution 𝒟i

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Loss function for each data 
point : z ℓ(x; z) : ℝd ↦ ℝ Qi(x) = 𝔼zt∈𝒟i

ℓ(x; zt
i)

Each agent has a data distribution 𝒟i

SGD instead of GD

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Loss function for each data 
point : z ℓ(x; z) : ℝd ↦ ℝ Qi(x) = 𝔼zt∈𝒟i

ℓ(x; zt
i)

Each agent has a data distribution 𝒟i

SGD instead of GD

gt
i =

1
k ∑

zt
i∈zt

∇ℓ(xt; zt
i)

Implications on Byzantine fault-tolerant FL



Distributed ML can be formulated in the same way

Loss function for each data 
point : z ℓ(x; z) : ℝd ↦ ℝ Qi(x) = 𝔼zt∈𝒟i

ℓ(x; zt
i)

Each agent has a data distribution 𝒟i

SGD instead of GD

gt
i =

1
k ∑

zt
i∈zt

∇ℓ(xt; zt
i) 𝔼 [gt

i] = ∇Qi(xt)

Implications on Byzantine fault-tolerant FL
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Distributed Image Classifiers
Data diversity <-> Redundancy

They are all deers.*

* CIFAR -10

Example
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-redundancy always exists(2f, ϵ)

With -redundancy 
D-SGD with CGE is -resilient

(2f, ϵ)
( f, 𝒪(ϵ) + 𝒪(σ))

 is a bound over variance of stochastic gradientsσ

Liu et al., arXiv ’21

Redundancy describes the datasets
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-redundancy: Subsets  with , , and ,
(f, r; ϵ) S, ̂S ⊆ {1,...,n} |S| = n − f | ̂S | ≥ n − 2f − r ̂S ⊆ S

dist (arg min
x∈ℝd

∑
i∈S

Qi(x), arg min
x∈ℝd

∑
i∈ ̂S

Qi(x)) ≤ ϵ
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Implications on Resilient FL

D-SGD with gradient filter can tolerate Byzantine agents and 
stragglers at the same time given redundancy

We can further involve asynchrony (resilient against stragglers)

Up to  Byzantine agents and  stragglersf r
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