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Minimizer of the agg. of n — 2f honest costs 4—} M|n|m|zer of the agg. of all honest costs

2f-redundancy is difficult in practical settings; noise, uncertainties, etc.

Inadequate to characterize relationship between redundancy and resilience!
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Minimiser of the agg. of any n — 2f honest costs is e-close to that of all the honest costs
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More on (2f, €)-redundancy

€ quantifies the loss of redundancy
Satisfied by every system for varied value of €

Enables derivation of lower and upper bounds on Byzantine resilience®

In distributed learning: we can characterize resilience versus heterogeneity

* Generalize prior results on resilience in distributed optimization, learning, state estimation, and swarm robotics.
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Byzantine robust gradient-filters

* Presence of Byzantine gradients warrants gradient filtering*

: GradFiIter(g{, ey gn) robustly aggregates gradients, instead of simple averaging

xt+1 — x! — 1, - GradFiIter(g{, IR gn)

- Prominent gradient-filters -

KRUM [Blanchard et al., NIPS’17], GMoM [Chen et al., SIGMETRICS’18]: |
" Bulyan [E-Mhamdi et al., ICML’18], CWTM [Yin et al., ICML18]: |
- CGE [Gupta & Valdya PODC 20]
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Accuracy under (2f, €)-redundancy

With (21, €)-redundancy, DGD with gradient filters is (f, ©O(€))-resilient

Liu et al., PODC ’21

CGE requires f < n/3
Resilience of CWTM is independent of f *

Resilience of CGE independent of d
Resilience of CWTM dependent on d

* Relies on additional assumption, besides (2f, €)-redundancy
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Distributed ML can be formulated in the same way

Each agent has a data distribution & .

Loss function for each data '
55 d Qi(x) —

point z: £(x;7) : R* — |

SGD instead of GD

- (g!] = Vo x")
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From (2f, ¢)-redundancy to (f, r; ¢)-redundancy

We can further involve asynchrony (resilient against stragglers)

Up to f Byzantine agents and r stragglers

With (f, r; €)-redundancy
D-SGD with CGE is (f, O(¢e) + O(o))-resilient

Liu et al., arXiv ‘21

D-SGD with gradient filter can tolerate Byzantine agents and
stragglers at the same time given redundancy

o 1S a bound over variance of stochastic gradients
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