Workshop on **Systems Challenges in Reliable and Secure Federated Learning** Oct 25, 2021

IBM Research

Separation of Powers in Federated Learning

Pau-Chen Cheng Kevin Eykholt Zhongshu Gu Hani Jamjoom K.R. Jayaram Enriquillo Valdez Ashish Verma

Photo credit: Dhilung Kirat

Information Leakage at **Aggregation**

Leakage in Model Updates

- Attribution leakage
- Content leakage

Examples

- DLG: Deep Leakage from Gradients (NeurIPS 2019) <u>https://arxiv.org/pdf/1906.08935.pdf</u>
- iDLG: Improved Deep Leakage from Gradients <u>https://arxiv.org/abs/2001.02610</u>
- IG: Inverting Gradients (NeurIPS 2020)
 <u>https://arxiv.org/abs/2003.14053</u>

https://github.com/mit-han-lab/dlg

Key Insights

Data Concentration

- All model updates in a central fusion server
- Single point of failure
- Leak complete and intact model updates

Algorithmic Properties

- Aggregation algorithms are bijective and coordinate-wise
- Aggregation *can* work on partitioned and out-of-order data
- Attacks cannot work on partitioned and out-of-order data

Confidential Execution

- Confidential execution with runtime memory encryption
- Remote attestable
- End-to-end data protection

TRUDA: Defense-in-Depth

• Decentralized Aggregation

- Multiple decentralized aggregators \rightarrow Prevent single point of failure
- Randomized model partitioning → Fragmentary view of model updates

Shuffled Aggregation

- Data shuffling at parameter-level \rightarrow Out-of-order view of model updates
- New shuffling every training round \rightarrow Misaligned model update order across consecutive rounds

Trustworthy Aggregation

- SEV to protect FL aggregation \rightarrow Confidential execution and remote attestation
- Trusted aggregator authentication \rightarrow Verifying trustworthiness of aggregators before training

TRUDA Architecture

IBM Research / © 2021 IBM Corporation

Model Partitioning and Shuffling

Initial **Results**

Conclusion

- Breaking data concentration in aggregation
- Exploiting computational properties of aggregation algorithms
- Defense-in-Depth with decentralized, shuffled, and trustworthy aggregation

zgu@us.ibm.com