GradSec: a TEE-based Scheme Against Federated Learning Inference Attacks

ResilientFL, 2021

Workshop on Systems Challenges in Reliable and Secure Federated Learning $October\ 25^{th}$, 2021

Aghiles AIT MESSAOUD¹, Sonia BEN MOKHTAR², Vlad NITU², Valerio SCHIAVONI³

¹ESI, Algiers ²LIRIS-CNRS, France ³University of Neuchâtel, Switzerland

Summary

Introduction

State-of-the-art

Contributions

Context

Advent of Federated Learning (FL) to ensure privacy-preserving training

Problem

Problem 1: FL is vulnerable to many attacks

Problem 2: TEEs offer limited secure memory (spatial constraint) and high latency (temporal constraint)

Objectives

GradSec: a TEE-based Scheme Against Federated Learning Inference Attacks

Inference Attacks in FL

Common point: The use of gradients emitted by the model to work

State-of-the-art approaches

Assumptions

- > Securing FL against the most cited Inference Attacks (DRIA, MIA, DPIA).
- > Considering the previous attacks carried out by the clients (the FL server uses Secure Aggregation).
- ➤ The FL models used are exclusively Feed-forward Neural Networks (Fully-connected or Convolutional, no Recurrent).
- ➤ The FL models use Stochastic Gradient Descent Algorithm [8] to update their weights.

Securing models per layer

attacker

Ideal solution

Realistic solution

Sources of Gradients leakage of layer l

Source 1: Compute the difference between two consecutive snapshots of the model

Source 2: Backpropagation computation flaw

Formula to update weights model:

$$W_l^{(t+1)} \leftarrow W_l^{(t)} - \lambda \, dW_l$$

Consecutive weights of the model

Gradients deduction

$$dW_l = \frac{W_l^{(t)} - W_l^{(t+1)}}{\lambda}$$

Solution: Put W_l in TEE secure memory

Operation Designation		
	Regular dot product	
\otimes	Convolutional dot product	

Solution : Secure most important parts of backpropagation computation in the TEE Secure Memory

10

Securing Backpropagation using TEEs

Securing last layer (l=n) Gradients

Computation flaw of Gradients

Backpropagation of the error to the previous layer

$\begin{array}{c} {\bf Secured} \\ {\bf Data/Operation} \end{array}$	Justification	
0	Represents the Gradients we want to secure	
2	Avoid disclosing dW_n in the cache memory	
3	Avoid the calculation of dW_n thanks to securing δ_n operand	
4	Avoid disclosing δ_n in the cache memory	
6	Avoid the computation of δ_n thanks to securing Y operand	
6	Additional safety measure to avoid the computation of δ_n if Y is known by the attacker	
•	Avoid source 1 of Gradients leakage to compute dW_n	
8	Avoid disclosing δ_n or W_n in the cache memory	

Operation	Designation
	Regular dot product
*	Hadamard dot product
\otimes	Convolutional dot product

Securing Backpropagation using TEEs

Securing layer 1 < l < n Gradients

Securing Backpropagation using TEEs

Securing first layer l = 1 Gradients

Contributions

Static GradSec and Dynamic GradSec

		Static GradSec	Dynamic GradSec	
	Protecting the same layers during all FL cycles protected_layers: List of protected layers protected_layers: List of protected layers		Changing the protected layers as the FL cycles through a moving window (MW)	
CLIDULIO			$\gt{size_{MW}}$: Number of protected layers during each FL cycle $\gt{V_{MW}}$: Vector of distribution of probability protection	
	Overview	TEE Enclave $Protected_layers = \{l_2, l_4\}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TEE Enclave $V_{MW} = [0.3 \ 0.2 \ 0.1 \ 0.4]$ $\begin{array}{c} l_1 \\ l_2 \\ l_3 \\ l_4 \\ l_5 \\ \end{array}$	

Evaluation: Experimental setup

	Metric	Dataset	Model to attack	Protection method
DRIA	Image Loss	CIFAR-100	LeNet-V1 (4 conv2D+ 1 Dense)	Static
MIA				
DPIA	AUC	LFW	LeNet-V2 (3 Conv2D + 2 Dense)	Dynamic

GradSec: a TEE-based Scheme Against Federated Learning Inference Attacks

ResilientFL 10/25/2021

Evaluation: GradSec against DRIA

➤ We should protect the L2 layer

Evaluation: GradSec against MIA and DPIA

Static GradSec against MIA

Static GradSec and Dynamic GradSec against DPIA

- ➤ The last layer is the most sensitive → layers that contain latent informations necessary to get membership informations [12]
- > Limited interest to protect many layers
- > We should protect only L5 layer

- Protection offered by securing statically 4 layers is equivalent to the protection offered by securing dynamically 2 layers.
- > Dynamic GradSec is more efficient than Static GradSec against DPIA

Evaluation: Comparison with DarkneTZ

		$\operatorname{GradSec}$	DarkneTZ	
Protection granularity		Per layer		
Cost of Individual	DRIA	Protecting early layers (2 nd)		
Cost of Individual protection against attacks	MIA	Protecting last layers (5 th)		
	DPIA	Dynamic GradSec	Protecting 4 layers	
		$(size_{MW} = 2)$	permanently	
Cost for grouped protection		DRIA and MIA (2^{nd})	DRIA and MIA $(2^{nd},$	
		$\mathrm{and}\ 5^{\mathrm{th}})$	$3^{\rm rd}$, $4^{\rm th}$ and $5^{\rm th}$ layer)	

8% more efficient in

grouped protection

16% more efficient

against DPIA

Thanks for your attention

Aghiles AIT MESSAOUD

Email: ga_aitmessaoud@esi.dz