Towards an Efficient System for Differentially-private, Cross-device Federated Learning

Kunlong Liu; Richa Wadaskar; Trinabh Gupta University of California, Santa Barbara

Gboard's next word prediction

Fig. 1. Next word predictions in Gboard. Based on the context "I love you", the keyboard predicts "and", "too", and "so much".

Goals

• Strong guarantees

- Differential privacy, even when some clients and the aggregator are both malicious
- Correctness or robustness of training: bounded gradients

Scalability

• Scale to million or billion

• Efficiency

low client-side cost

Orchard [OSDI '20]

Strong guarantees

- Differential privacy, even malicious clients and malicious aggregator
- Correctness or robustness of training: bounded gradients

Scalability

• Scale to million or billion

• **High** client-side cost, both computation and network

Gboard + Orchard [OSDI '20]

Setting

1.4 M parameters, 3000 rounds to converge, on a 6-core laptop

Computation

• 4 minutes per device per round.

Network

764 MB download per device per round

Gboard + Atom [Our system]

• Setting

o 1.4 M parameters, 3000 rounds to converge, on a 6-core laptop

Computation

 \circ move $\frac{1}{3}$ CPU time to offline phase.

Network

5 MB download per device per round

The rest of the talk

- Orchard
 - o architecture, threat model, key performance-related protocols
- Key ideas of Atom

Architecture of Orchard

Threat Model

• Aggregator: occasionally byzantine(OB)

o a rogue system administrator is executing an attack

• Clients: mostly correct (MC)

• a configurable small fraction (1-5%) can be malicious. (million out of billion)

• Security guarantees

• Privacy always guaranteed even if the aggregator is malicious

o Integrity guaranteed when aggregator is not malicious

CPU Bottleneck of Orchard

- zero-knowledge proof for the ciphertext
 - Proof time
 - ~8s for 1 CT (single thread)
 - ~235s for 1.4M parameters (342 CTs) on 6-core (12 threads)

Network Bottleneck of Orchard

- verifying the summation tree
 - 18 nodes
 6 leaf nodes + 12 non-leaf nodes
 - Network cost
 760MB for 1.4M parameters (342 CTs)

Idea 1: Switching to stochastic FedAvg

• Full batch gradient descent is not necessary

Accuracy of a DNN model on EMNIST dataset

Switching to stochastic FedAvg

Cost

- Network cost saving for Gboard
 - If the fraction is 1%, 11.24 MB per device.
 - If the fraction is 2%, 22.48 MB per device.
 - If the fraction is 5%, 56.21 MB per device.

Idea 2: Integrating Polynomial Identity Test

Polynomial Identity Test

- To check f(x) == 0
- In a prime field F, if a non-zero polynomial f(x) has M degree, it has at most M zero points.

•
$$Pr[r \leftarrow F; f(r) = 0] \le \frac{M}{|F|}$$

RLWE Encryption

- Enc(m) = (as+e, bs+e'+m), where a,b,s,e,m are all polynomials.
- $\operatorname{Enc}(g_1) = (a_1, b_1), \operatorname{Enc}(g_2) = (a_2, b_2), \operatorname{Enc}(g_1+g_2) = (a_3, b_3)$
- $Enc(g_1) + Enc(g_2) == Enc(g_1+g_2)$
- \Rightarrow a₁+a₂ == a₃ and b₁+b₂== b₃
- \Rightarrow a₁+ a₂- a₃ = **0** and b₁+ b₂ b₃ = **0**
- $\Rightarrow a_1(r) + a_2(r) a_3(r) = 0 \text{ and } b_1(r) + b_2(r) b_3(r) = 0$

New summation tree

Orchard mod 17

Atom mod 17, r=2

Idea 3: Splitting into Offline Phase

• Observation:

Ring multiplication most expensive

Splitting into Offline Phase

• Cost

Orchard:~235s for 342 CTs

Online: ~155.6s for 342 CTs

Offline: ~141.9s for 342 CTs

Summary

• Atom

- the same threat model as Orchard
- o scale to billions of clients
- Improves the per device download
- Improves the overall training time
- Future work
 - o committee