
Towards an Efficient System for
Differentially-private, Cross-device
Federated Learning
Kunlong Liu; Richa Wadaskar; Trinabh Gupta
 University of California, Santa Barbara

Gboard’s next word prediction

● Federated Averaging
Aggregator

Clients

global model Enc(gi)

Enc(g0) + Enc(g1) + ...

1E5*Enc(g0) + Enc(g1) + ...

Goals

● Strong guarantees

○ Differential privacy, even when some clients and the aggregator are both malicious

○ Correctness or robustness of training: bounded gradients

● Scalability

○ Scale to million or billion

● Efficiency

○ low client-side cost

Orchard [OSDI ’20]

● Strong guarantees

○ Differential privacy, even malicious clients and malicious aggregator

○ Correctness or robustness of training: bounded gradients

● Scalability

○ Scale to million or billion

● Efficiency

○ High client-side cost, both computation and network

Gboard + Orchard [OSDI ’20]

● Setting

○ 1.4 M parameters, 3000 rounds to converge, on a 6-core laptop

● Computation

○ 4 minutes per device per round.

● Network

○ 764 MB download per device per round

Gboard + Atom [Our system]

● Setting

○ 1.4 M parameters, 3000 rounds to converge, on a 6-core laptop

● Computation

○ move ⅓ CPU time to offline phase.

● Network

○ 5 MB download per device per round

The rest of the talk

● Orchard

○ architecture, threat model, key performance-related protocols

● Key ideas of Atom

Architecture of Orchard

Aggregator

Committee

pk

Clients

global model Enc(gi)
zkproof

Enc(g0) Enc(g1) Enc(g2) Enc(g3)

Enc(g2+g3)Enc(g0+g1)

Enc(g0+... + g3)

Merkle Tree

Enc(g0) + Enc(g1) + ...

g0 + g1 + … + DP noise18 nodes

Threat Model

● Aggregator: occasionally byzantine(OB)

○ a rogue system administrator is executing an attack

● Clients: mostly correct (MC)

○ a configurable small fraction (1-5%) can be malicious. (million out of billion)

● Security guarantees

○ Privacy always guaranteed even if the aggregator is malicious

○ Integrity guaranteed when aggregator is not malicious

CPU Bottleneck of Orchard

● zero-knowledge proof for the ciphertext

○ Proof time

■ ~8s for 1 CT (single thread)

■ ~235s for 1.4M parameters (342 CTs)
on 6-core (12 threads)

e0 r m e1

Range
Proof

Mult
pk0

Mult
pk1

Range
Proof

Range
Proof

Add Add

c0 c1

● verifying the summation tree

○ 18 nodes
6 leaf nodes + 12 non-leaf nodes

○ Network cost
760MB for 1.4M parameters (342 CTs)

Network Bottleneck of Orchard

Enc(g1) Enc(g2) Enc(g3)

Enc(g2+g3)Enc(g0+g1)

Enc(g0+... + g3)

Enc(g0)

Idea 1: Switching to stochastic FedAvg

● Full batch gradient descent is not necessary

Accuracy of a DNN model on EMNIST dataset

Switching to stochastic FedAvg

Aggregator

Clients

Enc(gi)

Enc(g0) Enc(g1)

Enc(g0+g1)
Merkle Tree

selected clients

18 nodes6 nodes

Switching to stochastic FedAvg

Aggregator

Clients

Enc(gi)

Enc(g0)

Enc(g0+g1)

Merkle Tree

selected clients

6 nodes

Enc(g0)Enc(g0)
x1 , x2

x1+y1,x2+y2

Enc(g0)Enc(g0)Enc(g1)
y1 , y2

Cost

● Network cost saving for Gboard

○ If the fraction is 1%, 11.24 MB per device.

○ If the fraction is 2%, 22.48 MB per device.

○ If the fraction is 5%, 56.21 MB per device.

Idea 2: Integrating Polynomial Identity Test

Aggregator

Clients

Enc(gi)

Merkle Tree

selected clients

6 nodes

Enc(g0+g1)

Enc(g0)
x1 , x2

x1+y1,x2+y2

Enc(g1)
y1 , y2

Polynomial Identity Test

● To check f(x) == 0

● In a prime field F, if a non-zero polynomial f(x) has M degree, it has at most M zero

points.

●

RLWE Encryption

● Enc(m) = (as+e, bs+e’+m), where a,b,s,e,m are all polynomials.

● Enc(g1) = (a1, b1), Enc(g2) = (a2, b2), Enc(g1+g2)=(a3, b3)

● Enc(g1) + Enc(g2) == Enc(g1+g2)

⇒ a1+ a2 == a3 and b1+ b2== b3

⇒ a1+ a2- a3 = 0 and b1+ b2 - b3 = 0

⇒ a1(r) + a2(r) - a3(r) = 0 and b1(r) + b2(r) - b3(r) = 0

New summation tree

9x+11

12x+15

f(x) = x+1 g(x)=2x+3 h(x)=2x+5 j(x)=7x+6

3x+4

Orchard
mod 17

12

5

f(2) = 3 g(2)=7 h(2)=9 j(2)=3

10

Atom
mod 17, r=2

Cost

Aggregator

Clients

Enc(gi)

Enc(g0)
Merkle Tree

selected clients

2 leaf nodes

Enc(g0)Enc(g0)
ct0[0] || ct0[1]

ct0[0]+ct1(r) ||
ct1(r)

Enc(g0)Enc(g0)Enc(g1)
ct1[0] || ct1[1]

Idea 3: Splitting into Offline Phase

● Observation:

Ring multiplication most expensive

e0 r m e1

Range
Proof

Mult
pk0

Mult
pk1

Range
Proof

Range
Proof

Add Add

c0 c1

● Cost

Orchard:~235s for 342 CTs

Online: ~155.6s for 342 CTs

Offline: ~141.9s for 342 CTs

Splitting into Offline Phase

e0 r m e1

Range
Proof

Mult
pk0

Mult
pk1

Range
Proof

Range
Proof

Add Add

c0
c1

Commit

h

r

h

Commit

Summary

● Atom

○ the same threat model as Orchard

○ scale to billions of clients

○ Improves the per device download

○ Improves the overall training time

● Future work

○ committee

